a2 United States Patent

US009075896B2

(10) Patent No.: US 9,075,896 B2

Barber 45) Date of Patent: *Jul. 7, 2015
(54) FAST COMPONENT ENUMERATION IN (56) References Cited
GRAPHS WITH IMPLICIT EDGES
U.S. PATENT DOCUMENTS
(71) Applicant: Kount Inc., Boise, ID (US) 5,825,369 A 10/1998 Rossignac et al.
(72) Inventor: Timothy P. Barber, Boise, ID (US) g’}ég’ggg g} ;gggé gﬁ:ﬁizz ZE ﬂ
. . 6,668,091 B1 12/2003 Kim et al.
(73) Assignee: Kount Inc., Boise, ID (US) 6,781,599 B2 82004 Abello et al.
6,801,905 B2 10/2004 An_drei
(*) Notice: Subject to any disclaimer, the term of this 7,065,420 Bl 6/2006 Philpott et al.
patent is extended or adjusted under 35 ;’gg’ggg gé i?gggg g;gfgg ot al
U.S.C. 154(b) by 0 days. 7,143,091 B2 11/2006 Charnock ef al.
This patent is subject to a terminal dis- (Continued)
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 13/905,952 Eric Robinson et al., “A Comparative Analysis of Parallel Disk-Based
. Methods for Enumerating Implicit Graphs”, PASCO’07, Jul. 27-28,
(22) Filed: May 30, 2013 2007, London, Ontario, Canada.*
(65) Prior Publication Data (Continued)
US 2013/0254169 Al Sep. 26, 2013 Primary Examiner — Javid A Amini
(74) Attorney, Agent, or Firm — Fenwick & West LLP
Related U.S. Application Data
L . 67 ABSTRACT
(63) Continuation of application No. 12/367,180, filed on
Feb. 6, 2009, now Pat. No. 8,462,161. A method and.system for graphical enumeration. The method
o o includes creating an ordered set of vertices for a graph such
(60) Provisional application No. 61/145,921, filed on Jan. that each vertex is associated with a corresponding index, and
20, 2009. wherein each vertex in the ordered set of vertices includes
information. A plurality of keys is created for defining the
(1) Int. Cl. information. A plurality of lists of vertices is created, each of
p ty
G061 11/20 (2006.01) which is associated with a corresponding key such that ver-
GOGF 1730 (2006.01) tices in a corresponding list include information associated
(52) US.ClL with the corresponding key. For a first list of vertices, a least
CPC GO6F 17/30958 (2013.01); GO6T 11/206 valued index is determined from a group of associated verti-
(2013.01); GO6T 11/203 (2013.01) ces based on vertices in the first list and vertices pointed to by
(58) Field of Classification Search the vertices in the first list. Also, all associated vertices are

CPC ittt GO6T 11/206
USPC ittt 345/440
See application file for complete search history.

pointed to a root vertex associated with the least valued index.

20 Claims, 8 Drawing Sheets

100

Creating an Ordered Set of Vertices fior a Graph such that Bach
Vartes Is associated with # Corresponding Index, wherein Each €7\ 118
Vertex in the Ordered Ses of Vertices Tnulades Information =

Creating a Ploratity of Keys Defining the Information I.z’ \\‘ 12

Creating & Plarality of Lists of Vertices, each of which Is assooiated
with o Corresponding Key such that Vertices in a Corresponding List Je™ 150
inchudes Informati iatod with the Corresponding Key e

v

For & Fisst Listof Vertives, Determining a Least Valued Index from &
Giroup of Associated Vertives Based On Vertiess in the Piest Lisy, and (& \ o140
Vertices Poimted to by the Vertices in the First List -

{

Pointing all Associated Vertices {0 2 Root Vertex Assoeiated with the }z’ AY Lag
Lenst Vahued ladex ! o 150

i End

US 9,075,896 B2
Page 2

(56)

7,224,729
7,301,912
7,321,366
7,603,651
7,605,816
7,729,538
7,933,915
8,396,884
8,429,108
8,462,161
2004/0243982
2005/0216238
2006/0045337
2006/0064432
2006/0075305
2006/0253418
2007/0011669
2007/0212719
2007/0239694

Bl

B2

B2 *
B2

B2

B2 *
B2 *
B2 *
B2 *
BL*
Al

Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*

References Cited

5/2007
11/2007
1/2008
10/2009
10/2009
6/2010
4/2011
3/2013
4/2013
6/2013
12/2004
9/2005
3/2006
3/2006
4/2006
11/2006
1/2007
9/2007
10/2007

U.S. PATENT DOCUMENTS

Jang et al.

Hong et al.

Teshima et al. 345/424
De Brabander

Peinado et al.

Shilman et al. 382/181
Singh et al. 707/760
Singh et al. .. 707/760
Eusterbrock . .. 706/45
Barberccccooevinninn, 345/440
Robison

Teshima et al. 703/2
Shilman et al. ... 382/181
Pettovello 707/103 X
Robinson et al. 714/38
Charnock et al. 707/1
Varmaetal.c....... 717/168
Hlavacek et al. ... 435/6
Singhetal. ..o 707/3

2007/0250500 Al 10/2007 Ismalon

2007/0298805 Al 12/2007 Basak et al.

2009/0043489 Al 2/2009 Weidner

2009/0216820 Al* 82009 Eusterbrock 708/270

2010/0214313 Al 82010 Herman et al.

2011/0173189 Al* 7/2011 Singhetal. 707/722
OTHER PUBLICATIONS

Stephan Wagner “Graph-theoretical enumeration and digital expan-
sions: an analytic approach” Feb. 2006.*

Sankar K, Sarad A V (hereinafter Sankar) “A Time and Memory
Efficient Way to Enumerate Cycles in a Graph” IEEE 2007 .*
Enumeration of Unlabeled Graphs, Timothy L. Vis;Date: May 1,

2007.*

A new way to enumerate cycles in graph, Hongbo Liu, Jiaxin

Wang;2006 IEEE *

Heer, J. et al., “DOITrees Revisited: Scalable, Space-Constrained
Visualization of hierarchical Data,” Advanced Visual Interfaces,

2004, pp. 421-424.

* cited by examiner

U.S. Patent

Jul. 7, 2015 Sheet 1 of 8

JNN————
i . N

P oalan

i

{

3

SR

¥

US 9,075,896 B2

160

o
OF

Craating an Ordered Set of Vartices fir a Groph such that Bach
Vertex s assoviated with & Corresponding Index, wherein Each
Vertex in the Ordered Set of Vertices havludes Information

+

Craating & Plorality of Keys Defining the Information

:

Creating 2 Plargiity of Lists of Verticey, cach of which iz assoviated
with a Coresponding Koy suech that Vertices in a Corresponding List

inchudes Information assosinted with the Correxponding Key

¥

Fer a First List of Vertices, Relermining a Least Valued Index o g
Group of Associated Vertives Based On Vertioss i the First Ldst, and
Yertioss Foimted to by the Vertives in the Fist Livt

!

Bainting sl Associated Vertices fo s Root Vertex Associated with the
Least Vahiod ladix

“‘\h_____a""" 1234
e
&2 \\\ o 130
&y
TN o 148
e
g ‘a‘\a .
o P56

3

:’“‘“‘Wj

B,

| Ead }
N

Fig. 1

U.S. Patent

Jul. 7, 2015 Sheet 2 of 8 US 9,075,896 B2
e 7N

¥

-

L 200
‘%,
L 210w
\ Eoo N N
¥

Infoemation

Information
Soures

vl

Souree

¢ "“\\
A O 210N
& \%
information
Souros

Information

Boece
x
I

JUENVSSVIVES

e,

R

T e
Storsge

Gragh
Enomersior
s
&2 100

Fig. 2

U.S. Patent Jul. 7, 2015 Sheet 3 of 8 US 9,075,896 B2

300

Regsiver %&-**"” N

o e e

A v A A A A A A S o W e 5o s Sees T Lt

Graph Definer T N aan

oo ot S Y
Koy Creator i \ 136

LAst Creator T

b amien,
ety \

Component Generatey |

Dyata & 3 Y e
{inta Storage -
[\ "}"35

o

Transaction Anabyzer le"T N\ 160

U.S. Patent Jul. 7, 2015 Sheet 4 of 8 US 9,075,896 B2

400

SERRENS

] Start }

o s . A 0 o 0 o . e 1 e e s e o e v e e e e oo s e o o s e 3

Reveiving Information Related 1o gt fosst Qne Lonwmez Tronssction &
imf‘} at feast One %N e § S

T

Creating an Ondered Set of Vertives for a Graph such that Each
Veortex i assoviated with & Corresponding Index, wherain B a&‘}z
Vertey in the Ordersd Set of Verticss Includes the Tnfermatio

Creating a Plarality of Keys Defining the Information & 430
3 ‘/‘“‘ i

{
¥

Staring the Urdered Sot of Vartives in Slovags Pl .
Vo 448

Creating a Plaraiity of Liste of Virtives, cach of which Ix sssociated
with & Corresponding Key auch that Vertices in a Corvesponding List &3 450
includex Information assoviited with the Corresponding Key " '

i
For s First Last of Vertices, Determining a Least Valued Index from s
Group of Assoviated Vertices Based Cn Vertices in the First List, andd &7 \ P
Vertices Polnted to by the Vertices in the First List g

'

Pointing all Associated Vartices 1o 8 Romt Veorted Associated with the ™ .
Vo 4T
Least Vahuad Index g

¥ X
Storing in the Storage the Root Index in Covresponding Vertex Pl
Entrins i the Ordersd Set of Verticss

ém

US 9,075,896 B2

Sheet 5 of 8

Jul. 7, 2015

U.S. Patent

VS B

. {649 {4-has} {522} {{-A24}
LA 77 HH X oy % X% X p wonsESHTL],
: Wﬂ p
r— w.w
]

& &

&
®
& @ @
&
& @& @

PPN {g-Aem (-804} ./ by |/ {5-Aan
| WY FIH £33 44 T NIRRT
06 ® {-horgy {g-Aey) {7-A0%) (1-fony #
. (i 7303 147 XY] MOOBSIELL
&89 N .
BEHIDPY H BRIy R IR iy gy

41 SUPLIEA freuny i varig’ NEIS AR Y

Lo 4 L]

W
Pt
vaasy
W
™
el
5y
s
feee
Sy
-~
Lo
A
My

Yi0s

US 9,075,896 B2

Sheet 6 of 8

Jul. 7, 2015

U.S. Patent

€608

LB RBREBRERB
» -3
& TOHRIRRgel Y =
% PUQLOERTRIY

REBERESE BB Y

LERBREZERBERBEERE®
B
-3
. %
B GUIEURI] g
% '

FEEEEEREETEENL

L L 1

L %]

baed

202

2 3

B M BB BB R

®
%
#

BEBERBEBREBER

LERELEBEEEEEE

%
%
%

1 UEHEMIRIR L

§ ISR |

BEBEBRIXBEER

BREBEEBRERE RS &
1]

1 uldnoeEaRl g,

B
]

weesneassed

BEBEEERBEDR

1 UORERIT

23]
ARG BB RA R

BRBRBRRBERER

£ UBI0EETRLY

LR B EEERD]

BEEBEHERES

{ BOORS

H
AL

£ HLESImA Y

7.4 GOnYERIL

Fate

K UOTYSESIRL Y

&

2

&

§ VISR L

4 ROLEIESURLY

O uonoRRal

B4 UOHYESURLY

{38 UL

$SIPPY 1}
01§ 493

>
faakd
Kl

LIz
{$RaIppY gy}
it A2

o
o7
s

REBEEREBREER Y
B

TR L]

U.S. Patent Jul. 7, 2015 Sheet 7 of 8 US 9,075,896 B2

ROQT
VERTHEN

V.1

L L 1

YN

§a1

562

Transaction

S001

s
. . {’ > (O AU V.15 'Y R
€F -
Fig. 5D
- o C-2 Y.
572
&
B
&
573
- - 2X V.XX VG00
(o

U.S. Patent

US 9,075,896 B2

Jul. 7, 2015 Sheet 8 of 8

600

™
H
!

E.., o
1
: ;f;':ﬁﬁ\ o @

I

Stamt

g a By Associated with » kevalng, Kee{k) froan a Pluvality
vy Defining Information Cordatned v au Qederad Sevof
oviied with & Corresponding

S

fces Yo & Graph, Bach Vertex
Inde, Bach Key Associated with a k-valag

inchwdes nformatton

ﬁ,.
"

¥

Listing ol Vertlogs Assoclated with Keylk if
Asscensted with Kavik
¥
" . - ca s -~ o [N Syt P
Determining Pointed 1o Vertices for each of the Listed Vertives EON L s
o B30

¢
& o G40

Determining a Least Valued Index fhonr a Droup of Vartices taken
e Assoctatest with Keyik), snd Vertioss Polnted o

from Listed Vertio
by the Vertions I the Listed Vertices
E ~
R
I S Y
Al e, H
R i
w.\m?:\
v,

Droes the Index Least Valued Index
Baint to another Vertex? -

No .
AAAAAAAAAAAAAAAAAA Q;-»;NN‘“\
‘“““‘“M\“ ,.n”‘"""mN
S—
v Yes
Reset the Least Valued Index In Association with that Voriex
Pointlng all Associared Vertices 10 a Root Vortex Assovialed with the Ty vy
"""" v v 1y N S
Least Valued Index B
&N -
e \ o BRG

Set ko the

e
S

HERL
availabis Yes
Key

¥
o 600

US 9,075,896 B2

1
FAST COMPONENT ENUMERATION IN
GRAPHS WITH IMPLICIT EDGES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 12/367,180, filed Feb. 6, 2009, which claims the benefit
of' U.S. Provisional Application No. 61/145,921, filed on Jan.
20, 2009, each of which is incorporated by reference in its
entirety.

BACKGROUND

The present invention pertains to the field of data storage.
Specifically, the present invention provides for the enumera-
tion of components in a graph without explicitly defining the
edges in the graph.

A graph is a collection of “vertices” (points or nodes) and
“edges” (lines connecting points). The graph can be repre-
sentative of any set of data, such as those related to travel,
biological samples, and chip design, to name a few. Points in
the graph represent an individual collection of data, and edges
between two points can represent data that is shared between
the two points. For instance, in the travel industry a graph may
represent a grid of airline flights between numerous cities
regardless of which airline is used. Each node in the graph can
represent a city to which a flight is possibly directed. In one
case, connected points form an edge and are related in that
those two points share the same flight. As another edge, the
connected points may represent a flight between two cities for
a particular airline.

In conventional techniques, a graph is typically repre-
sented in memory as a list of all pairs of vertices that share an
edge. In addition, a “connected component” of a graph is any
subset of vertices all connected by some sequence of edges.
Enumerating the connected components of a graph is a prob-
lem in classical computer science. Traditional methods
include Kosaraju’s algorithm, Tarjan’s algorithm, and
Gabow’s algorithm.

However, for each of these techniques enumerating con-
nected components, execution time and space in memory are
proportional to the total number of vertices and edges, or
O(V+E). In more simplistic terms, the entire graph and all the
edges in the graphs need to be evaluated in order to enumerate
the connected components. While this may seem like a
straightforward technique, as the number of points in the
graph increases, the time to enumerate the graph also
increases. For graphs that include points that are heavily
connected, the execution time may increase to the square of
the number of points in the graph. As such, for large amounts
of data, traditional techniques for component enumeration
fall short of providing real-time analysis of the graphical data.

SUMMARY

What is needed is an invention that provides a faster and
more efficient way to enumerate graphs. What is described in
the present invention is a method and system for enumerating
graphs, and in particular for enumerating components of a
graph for purposes of associating vertices in the graph to
provide data analysis.

A method for graphical enumeration is described, in accor-
dance with one embodiment of the present invention. The
method is used to process information related to any type of
data, such as customer transactions. The information can be
represented as a graph. The method includes creating an

10

15

20

25

30

35

40

45

50

55

60

2

ordered set of vertices for a graph such that each vertex is
associated with a corresponding index. Each vertex in the
ordered set of vertices includes a subset of the information,
such as one customer transaction. A plurality of keys is cre-
ated that define the information. Each key is associated with
a unique piece of information. A plurality of lists of vertices
is created, each of which is associated with a corresponding
key, such that vertices in a corresponding list include infor-
mation associated with the corresponding key. For a first list
of'vertices, a least valued index is determined from a group of
associated vertices based on vertices in the first list and ver-
tices pointed to by the vertices in the first list. Also, all asso-
ciated vertices are pointed to a root vertex associated with the
least valued index.

In another embodiment, a system for performing graphical
enumeration is described. The system can be implemented in
conjunction with a communication network that is coupled to
aplurality of information sources. For instance, the system is
used to perform graphical enumeration on customer transac-
tions that are associated with the plurality of information
sources. The system includes a receiver for receiving infor-
mation related to at least one consumer transaction from at
least one computing resource at a corresponding source. For
instance, the corresponding source may be a merchant par-
ticipating in the transaction, a credit card processing com-
pany, a consumer initiating the transaction, or the like. A
graph definer is included in the system for creating an ordered
set of vertices for the graph, such that each vertex is associ-
ated with a corresponding index. The ordered set of vertices
includes the information that is received. Storage is included
in the system for storing the ordered set of vertices. In addi-
tion, the system includes a key creator for creating a plurality
of keys defining the information. A list creator creates a
plurality of lists of vertices by accessing the ordered set of
vertices that is stored. Each of the lists of vertices is associated
with a corresponding key, such that a vertex in a correspond-
ing list includes information associated with the correspond-
ing key. The system also includes a component generator for
enumerating the graph. The component generator determines
aleast valued index from a group of associated vertices based
on vertices in the first list and vertices pointed to by the
vertices in the first list. Also, the component generator points
all associated vertices to a root vertex associated with the least
valued index.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are illustrated in referenced fig-
ures of the drawings which illustrate what is regarded as the
preferred embodiments presently contemplated. It is intended
that the embodiments and figures disclosed herein are to be
considered illustrative rather than limiting.

FIG. 1 is a flow diagram illustrating a method for perform-
ing fast enumeration of components in a graph, in accordance
with one embodiment of the present invention.

FIG. 2 is a diagram of a communication network that
includes a system that is capable of fast enumeration of com-
ponents in a graph, in accordance with one embodiment of the
present invention.

FIG. 3 is a system that is capable of fast enumeration of
components in a graph, in accordance with one embodiment
of the present invention.

FIG. 41s aflow diagram illustrating in more detail a method
for performing fast enumeration of components in a graph, in
accordance with one embodiment of the present invention.

US 9,075,896 B2

3

FIG. 5A is an illustration of a table representation of a
graph including information related to customer transactions,
in accordance with one embodiment of the present invention.

FIG. 5B is an illustration of a plurality of lists of vertices as
arranged by keys, in accordance with one embodiment of the
present invention.

FIG. 5C is an illustration of a look up table providing
relationships between a vertex and a corresponding root ver-
tex, in accordance with one embodiment of the present inven-
tion.

FIG. 5D is an illustration of a look up table providing
relationships between a component of a graph and its family
of'vertices, in accordance with one embodiment of the present
invention.

FIG. 6 is a flow diagram illustrating a detailed method for
component enumeration, in accordance with one embodi-
ment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made in detail to the preferred
embodiments of the present invention, a method and system
for enumerating components in a graph. While the invention
will be described in conjunction with the preferred embodi-
ments, it will be understood that they are not intended to limit
the invention to these embodiments. On the contrary, the
invention is intended to cover alternatives, modifications and
equivalents, which may be included within the spirit and
scope of the invention as defined by the appended claims.

Accordingly, embodiments of the present invention are
capable of providing a faster and more efficient way to enu-
merate components of a graph in order to find associations
between vertices. In particular, the present invention is
capable of avoiding edge analysis when enumerating a graph
through the creation of keys and making other various asso-
ciations. As such, embodiments of the present invention need
not perform an explicit analysis of each edge in a graph when
enumerating components of a graph.

NOTATION AND NOMENCLATURE

Embodiments of the present invention can be implemented
on a software program or dedicated hardware for processing
data through a computer system. The computer system can be
a personal computer, notebook computer, server computer,
mainframe, networked computer (e.g., router), handheld
computer, personal digital assistant, workstation, and the like.
This program or its corresponding hardware implementation
is operable for fast enumeration of components of a graph
without explicit edge analysis. In one embodiment, the com-
puter system includes a processor coupled to a bus and
memory storage coupled to the bus. The memory storage can
be volatile or non-volatile and can include removable storage
media. The computer can also include a display, provision for
data input and output, etc.

Some portion of the detailed descriptions that follow are
presented in terms of procedures, steps, logic block, process-
ing, and other symbolic representations of operations on data
bits that can be performed on computer memory. These
descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. A
procedure, computer executed step, logic block, process, etc.
is here, and generally, conceived to be a self-consistent
sequence of operations or instructions leading to a desired
result. The operations are those requiring physical manipula-

10

15

20

25

30

40

45

55

60

65

4

tions of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated in a computer system. It has
proven convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms
such as “determining,” “creating,” “defining,” or the like refer
to the actions and processes of a computer system, or similar
electronic computing device, including an embedded system,
that manipulates and transfers data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

Graph Analysis

Graph theory is used to represent data of various types. The
data is represented as objects in a graph, where “vertices”
represent the data objects and “edges” are links that connect
pairs of vertices. As such, a graph is a collection of vertices
(nodes or points) and edges (lines connecting two points).
Points in the graph represent an individual collection of data,
and edges between two points can represent data that is shared
between the two points.

Conventionally, a graph can be represented in memory as a
list of all pairs of vertices that share an edge. In addition, the
graph can be represented by vertices that do not share an edge
with another vertex. In addition, a “connected component” of
a graph is any subset of vertices, each of which is connected
to one or more vertices in the connected component by some
sequence of edges. Embodiments of the present invention are
able to perform enumeration of components of a graph with-
out explicitly identifying edges within the graph.

A graph can represent a variety of data. As examples, graph
theory is employed to represent data objects in transportation,
Internet structure, communication traffic networks, airline
travel networks, computer chip design, physics, biology, etc.
For instance, a graph can represent employees in a large
international company and identify specifically where an
employee works, at what position, earning what salary, etc.
As another example, graph theory can be employed to repre-
sent structural properties of an air transportation network.
The graph may represent a grid of airline flights between
numerous airports, and include information such as the loca-
tions of airports, specific flights between airports, associated
airlines, flight times, etc. Also, graph theory is employed to
represent a molecular structure, or to represent three-dimen-
sional atomic structures of an atom.

One particular implementation of embodiments of the
present invention is used to model behavior, and more spe-
cifically is used to perform risk analysis of consumer behavior
within the context of making retail purchases. In one instance,
risk analysis of a graph is used to prevent fraud. For instance,
transaction orders that use the same credit card number, email
address, hypertext transfer protocol (HTTP) cookie, machine
fingerprint, Internet protocol (IP) address, or any of a number
of factors, may be related. In the case of fraud analysis, an
online retail customer with one email address and twenty
credit card numbers may be in possession and using a list of
stolen credit cards.

US 9,075,896 B2

5

Fast Component Enumeration of Graphs

Conventionally a graph is represented in memory as either
a list of all pairs of vertices that share an edge. Suppose
instead of explicitly defining edges, a graph of embodiments
of the present invention is represented as a list of single
vertices, each associated with a list of “keys”. Also suppose
that there is no explicit list of edges, but implicitly embodi-
ments of the present invention make the implication that two
vertices share an edge if they share a common key value. For
this special case, component enumeration of embodiments of
the present invention requires an execution time that is at
worst represented by O(V-log V) and requires a memory
space approximating O(V), where O is the execution time and
V is the number of vertices. In practice this represents a
substantial savings over the previously described execution
time of traditional methods O(V+E), since in graphs with
heavily connected components O(V+E) approaches O(V?).

FIG. 1 is a flow diagram 100 illustrating a method for fast
enumeration of components of graphs, in accordance with
one embodiment of the present invention. The process out-
lined in flow diagram 100 is used to reduce data presented in
the form of graphs into their various components. More par-
ticularly, throughout the process, the resulting components
form spanning trees that degenerate down to one, where from
each vertex, there is one edge to the root vertex.

At 110, an ordered set of vertices for a graph is created.
Each vertex in the graph is associated with a corresponding
index. For instance, the index may follow canonical form,
such as a numbering system. In one example, each vertex
represents a consumer transaction and is ordered with some
relation to time, such as when the transaction occurred, when
the transaction was received, when the transaction completed
processing, etc. Further, each vertex in the ordered set of
vertices includes information that defines that transaction.
The information may be unique to a vertex, or may be shared
by one or more vertices. For instance, in a retail environment,
a single credit card may be used in numerous transactions. As
such, vertices relating to those transactions are linked in the
graph through the credit card.

At 120, a plurality of keys is created that define the infor-
mation. In particular, each key defines a unique piece of
information. For instance, in the retail environment, informa-
tion related to consumer transactions may include credit card
information, HTTP cookies associated with the computing
resource used to complete the transaction from the buyer’s
side, IP address of the computing resource used to access the
Internet, email address of the buyer, etc. Each of these pieces
of information is associated with a different key. The total
number of keys is constantly changing as new information is
received, and less useful information expires. For instance,
each credit card number used in a transaction is unique and is
associated with a unique key.

At 130, a plurality of lists of vertices is created. More
particularly, for each key, a corresponding list of vertices is
created, such that vertices in the corresponding list include
information that is associated with the corresponding key. For
example, a credit card may be used in numerous transactions.
Each of those transactions is represented by a different vertex
in the graph representing all known consumer transactions.
For the key associated with the credit card, a list is created of
vertices that include the same credit card. That is, the list
includes vertices associated with transactions that have used
the same credit card.

At 140, for a first list of vertices, a least valued index is
determined from a group of associated vertices. The group of
associated vertices is based on vertices in the first list, and also
vertices pointed to by the vertices in the first list. In one case,

10

15

20

25

30

35

40

45

50

55

60

65

6

the group includes the vertices in the first list, and also verti-
ces pointed to by the vertices in the first list. More particu-
larly, as the process in flow diagram 100 is performed, each
vertex in the graph will point downhill to another vertex,
within the context of the ordered set of vertices. Root vertices
do not point downbhill, but form the endpoint of link between
vertices. Eventually, each vertex will point downhill to a root
vertex in a corresponding component of the graph. The least
valued index is associated with a vertex in the graph.

In addition, the group of associated vertices includes a
vertex or chain of vertices that is pointed to by a list vertex that
is associated with the least valued index from vertices in the
first list and vertices pointed to by the vertices in the first list.
That is, an additional check is made to determine if the list
vertex points to another vertex, and so on in a chain of pointed
to vertices. If so, the least valued index is adjusted to the
lowest index in the chain of pointed to vertices.

At 150, all associated vertices are pointed to a root vertex
associated with the least valued index. This pointing opera-
tion links the associated vertices to other vertices in the graph.
More particularly, each of the associated vertices is updated,
such that they all point to the most current root vertex. Since
they point to their most current root vertex, as the operations
in 140 and 150 are repeated for each of the plurality of lists of
vertices, vertices in the graph will continually update their
corresponding pointed to vertex. In particular, for a second
list of vertices, a least valued index is determined from a
group of associated vertices. The group of associated vertices
includes vertices in the second list, and also vertices pointed
to by the vertices in the second list. Also, all of these associ-
ated vertices are pointed to a second root vertex that is most
current, associated with the least valued index. Eventually
each vertex in the ordered set of vertices of the graph will
point to a root vertex that is the true root of a component of the
graph.

In one application, as previously described component
enumeration of a graph is performed as part of a risk analysis
of consumer behavior, such as retail purchases. Orders that
use the same credit card number, email address, http cookie,
machine fingerprint, IP address, or other factor, may be
related. In practice, it can be useful to assemble groups of
such orders for further analysis, such as when performing
fraud analysis. Embodiments of the present invention are
described within the context of risk analysis of consumer
behavior, for illustration purposes. However, other embodi-
ments are well suited to component enumeration of graphs
representing any type of data for purposes of any type of data
analysis. That is, methods and systems of the present inven-
tion are well suited to performing component enumeration on
any graph representing any type of data in a quick and effi-
cient manner.

FIG. 2 is an illustration of a communication system 200
that is capable of performing component enumeration of
graphs in a quick and efficient manner, in accordance with one
embodiment of the present invention. Specifically, as shown
in FIG. 2, communication system 200 is capable of support-
ing risk analysis of consumer behavior, such as behavior
related to making consumer transactions for retail purchases.
That is, an Internet based service is able to collect information
related to consumer transactions, represent the information in
graph form, and analyze the information, in part by enumer-
ating components of the graph.

As shown in FIG. 2, a plurality of information sources 210
accesses the Internet 250, each through a corresponding net-
work device (e.g., router) in order to pass on information to
the graph enumerator 300. The Internet 250 is a collection of
communicatively coupled routers, servers and browsers asso-

US 9,075,896 B2

7

ciated with a client’s computing resource that allow for the
transfer of content (e.g., data, information on consumer trans-
actions, files, etc.) between the plurality of information
sources 210 and the graph enumerator 300. Ever evolving
services as implemented through the Internet provide for the
communication of information for business, education, work,
private, and social purposes. For example, a fraud detection
service, as implemented through the graph enumerator 300
may implement the methods and systems for fast component
enumeration of the present invention as provided by an Inter-
net based service.

Each of the information sources (e.g., 210A-N) provides
information related to a consumer transaction or order, such
as those making retail purchases. For instance, a consumer
transaction may involve a buyer and a merchant (e.g., seller).
The transaction between the buyer and merchant may occur
over the Internet as a form of electronic commerce (e-com-
merce), or may be implemented through more traditional
means, such as through a person-to person transaction at a
brick-and-mortar merchant. Information related to the con-
sumer transaction is collected at a corresponding information
source. The source may be associated with either the buyer,
the merchant, or a third party service. As an example, in an
e-commerce setting, the buyer’s computer resource may col-
lect the information related to the consumer transaction and
relay that information to the graph enumerator 300. Also, in
either the e-commerce setting or a more traditional market
setting, a merchant may collect the information related to one
or more transactions and send them to the graph enumerator
300. Further, in either the e-commerce setting or the more
traditional market setting, a third party service, such as a
credit card company or credit card processing company, may
collect the information and send it to the graph enumerator
300 for further analysis.

For example, the information relating to a current transac-
tion may be linked to other consumer transactions. As
described previously, as the information is incorporated into
a graph representing a plurality of consumer transactions,
graph enumeration determines whether the current transac-
tion may be linked to other consumer transactions. The rela-
tionship of the current transaction to other previous transac-
tions is useful in performing fraud analysis, as an example. As
such, the current transaction may be halted if fraud is
detected, or may be authorized to complete the credit card
transaction, if no fraud is detected. In addition, future trans-
actions involving the same information (e.g., credit card,
machine ID, email address, etc.) may be halted if fraud is
detected.

The graph enumerator 300 of FIG. 2 is a system that per-
forms graphical enumeration, and more specifically is
capable of performing component enumeration of a graph, in
accordance with one embodiment of the present invention.
The graph enumerator 300 includes means for creating an
ordered set of vertices for a graph such that each vertex is
associated with a corresponding index, and wherein each
vertex in the ordered set of vertices includes information (e.g.,
information related to consumer transactions). The graph
enumerator also includes means for creating a plurality of
keys that define the information. Also, the graph enumerator
300 includes means for creating a plurality of lists of vertices,
each of which is associated with a corresponding key such
that vertices in a corresponding list includes information
associated with the corresponding key. Further, the graph
enumerator 300 includes means for determining a least val-
ued index from a group of associated vertices based on ver-
tices in a first list of vertices associated with a corresponding
key, and vertices pointed to by vertices in the first list. The

10

15

20

25

30

35

40

45

50

55

60

65

8

graph enumerator 300 also includes means for pointing all
associated vertices to a root vertex, that is most current, and
associated with the least valued index.

FIGS. 3 and 4 in combination illustrate a system and
method for performing fast component enumeration of a
graph, in accordance with embodiments of the present inven-
tion. In particular, FIG. 3 illustrates the graph enumerator
300, first introduced in FIG. 2, that is capable of implement-
ing the method outlined in F1G. 4 for component enumeration
of'a graph. The system and method of FIGS. 3 and 4 can be
implemented within communication network or system 100
of FIG. 1.

In general, the graph enumerator 300 includes an optional
receiver 310, graph definer 320, key creator 330, list creator
340, component generator 350, data storage 225, and optional
transaction analyzer 360. In one implementation, receiver
310 receives information related to at least one consumer
transaction from at least one source. In another implementa-
tion, receiver 310 is an input mechanism for receiving infor-
mation into system 300. Graph definer 320 creates an ordered
set of vertices for a graph such that each vertex is associated
with a corresponding index. The ordered set of vertices
includes the information related to at least one consumer
transaction. Key creator 330 creates a plurality of keys defin-
ing the information. List creator 340 creates a plurality of lists
of vertices, each of which is associated with a corresponding
key such that vertices in a corresponding list includes infor-
mation associated with the corresponding key. Component
generator 350 determines a least valued index from a group of
associated vertices based on vertices in a first list of vertices,
and vertices pointed to by the vertices in said first list. Com-
ponent generator 350 also points all associated vertices to a
most current root vertex that is associated with the least
valued index. Data storage 225 may be incorporated within
graph enumerator 300, or located remotely from graph enu-
merator 300, and is used for storing the ordered set of vertices,
and storing a root index associated with a most current root
vertex in corresponding entries of the ordered set of vertices.
Also, storage 225 is capable of storing, in relation to a com-
ponent, vertices that are associated with the component, such
that vertices that point to the same root vertex are associated
with a corresponding component of the graph. The functions
performed by graph enumerator 300 are described in more
detail in association with FIG. 4.

Turning now to FIG. 4, a method for component enumera-
tion for graphs including information related to consumer
transactions is illustrated in flow diagram 400, in accordance
with one embodiment of the present invention. The method of
FIG. 4 is analogous to the method outlined in flow diagram
100 of FIG. 1, in one embodiment, but provides more detail
into the transfer and transformation of information related to
a graph. In addition, the method of FIG. 4 is implementable
by the graph enumerator 300 of FIG. 3, and implementable
within the communication system or network 200 of FIG. 2.

At 410, optionally, information is received for processing.
For instance, the information is received by receiver 310 of
graph enumerator 300 from one or more sources 210A-N.
More specifically, in one implementation the information is
received from a source (e.g., merchant machine, buyer
machine, third party machine, such as a credit card processing
company, etc.). The information may be received over the
Internet, or through some communication network, so that the
information may be analyzed in relation to previous con-
sumer transactions, with results returned to a requestor in a
timely fashion. In another instance, the information is
received through other means, such that receiver 310 acts as
an input mechanism. Still other means for receiving data is

US 9,075,896 B2

9

supported. While the present embodiment is described within
the context of receiving information related to consumer
transactions, the method of flow diagram 400 is well suited to
component enumeration of any graph representing any type
of data that is received for analysis.

At 420, an ordered set of vertices for a graph is created. For
instance, the graph definer 320 is capable of creating the
ordered set of vertices. Each vertex in the graph is associated
with a corresponding index. The operation outlined in 420 is
analogous to the operation outlined in 110, and the descrip-
tion of 110 previously provided is equally suited to the opera-
tion of 420. In particular, each vertex includes information,
such as those related to consumer transactions (e.g., credit
card number, IP address, etc.).

At 430, a plurality of keys is created that define the infor-
mation. For instance, the key creator 330 is capable of creat-
ing the keys. The operation outlined in 430 is analogous to the
operation outlined in 120, and the description of 120 previ-
ously provided is equally suited to describing 430. In particu-
lar, each key defines a unique piece of information associated
with one or more vertices. As described before, the informa-
tion related to consumer transactions may include credit card
information, HTTP cookies associated with the computing
resource used to complete the transaction from the buyer’s
side, IP address of the computing resource, email address of
the buyer, etc.

At 440, the ordered set of vertices is stored in storage. For
instance, graph definer 320 stores the ordered set of vertices in
storage 225. As such, as each set of information (e.g., infor-
mation related to a single and new consumer transaction) is
received, graph definer 320 parses out the information and
stores that information in relation to a corresponding vertex in
the ordered set of vertices. More particularly, the ordered
vertices are stored in storage 225, such that information and
their relationship to the keys are stored for ready access. As
such, as the ordered set of vertices gets updated through the
addition and deletion of vertices, a complete set of vertices is
available for access in order to perform component enumera-
tion of the representative graph.

For illustration purposes only, FIG. 5A shows table 500A
that is a representation of the ordered set of vertices in a graph,
in accordance with one embodiment of the present invention.
As shown in 500A, the vertices include information related to
customer transactions. As generally described for graphs rep-
resenting consumer transactions, each transaction attempt is
represented as a row in a database table (a vertex). Each row
includes a list of data elements (keys) associated with the
transaction. Each group of vertices connected by some
sequence of edges is a connected component of the larger
graph. In embodiments of the present invention, each vertex is
rapidly labeled with a number representing the component to
which it belongs when implementing the method of FIG. 4.

For instance, column 510 provides the index number in the
ordered set of vertices representing transaction attempts.
These are ordered as transactions 1-N, and can represent any
ordering scheme, such as an ordering by time (e.g., time
transaction received). The remaining columns providing
information related to each of the vertices, in the form ofkeys.
As explained above, the keys implicitly define edges, such
that any two vertices that share a key also implicitly share an
edge. For instance, as shown in table 500A, column 511
provides a credit card number, column 512 provides an email
address, column 513 provides machine identifying informa-
tion (e.g., unique 1D identifying the computing resource used
by the consumer to make the transaction), column 514 pro-
vides the IP address of the computing resource used by the
consumer, etc.

10

15

20

25

30

35

40

45

50

55

60

65

10

It is important to note that table S00A is an illustration of
the ordered set of vertices, and as such, the ordered set of
vertices may be arranged in any number of other ways or
configurations. As shown in table 500A, information com-
mon to consumer transactions are included in the columns,
and are relevant when trying to group transaction together for
purposes of further analysis. The information need not be
presented by column, and can be presented in random fash-
ion. For instance, a transaction could list relevant information
in random order, as long as a reference to the corresponding
key is made.

As shown in FIG. 5A, each transaction includes various
types of information and their association with a correspond-
ing key. For instance, for transaction 1, the credit card number
is XX and is assigned to key-1; a given email address is BB
and is assigned to key-2, a machine ID is CC and is assigned
to key-3, and an IP address is DD and is assigned to key-4.
Additional information may be provided. Also, not all the
information in each of the columns need be reported for each
transaction. Similarly, information is collected and stored for
transactions 2-N.

Importantly, information maybe commonly shared
between different transactions. For instance, as shown by
curved line 521 the credit card number XX assigned to key-1
is used in transactions 1 and N. As such, transactions 1 and N
are related or linked by the credit card number XX. In addi-
tion, as shown by line 522, transactions 2 and N are linked by
the common email address GG assigned to key-6. Further, as
shown by line 523, transactions 2 and N are linked by com-
mon machine ID HH assigned to key-7. As such, transactions
1, 2 and N are related in that transaction 1 has information
common with transaction N, which has information in com-
mon with transaction 2. This interrelationship or grouping
may be important for purposes of performing further analysis.

Returning to F1G. 4, at 450, a plurality of lists of vertices is
created. For instance, list creator 340 creates the lists of
vertices. The operation in 130 of flow diagram 100 is analo-
gous to operation 450, and as such the description for 130 is
equally applicable for describing operation 450. In particular,
for each key, a corresponding list of vertices is created, such
that vertices in the corresponding list include information that
is associated with the corresponding key. As an example, for
key-1 associated with credit card number XX, the list would
include transactions that have used credit card number XX,
such as transactions 1 and N, and possibly others.

For illustration purposes only, FIG. 5B is an illustration of
atable 500B that is a representation of the plurality of lists of
vertices as arranged by keys, in accordance with one embodi-
ment of the present invention. It is intended that FIG. 5B is
associated with the information provided in FIG. 5A.

As shown in FIG. 5B, each list of vertices (e.g., a column)
corresponds to a key. For instance, the information in column
531 corresponds to key-1 assigned to credit card number XX,
information in column 532 corresponds to key-22 assigned to
credit card number 22233344, information in columns 533
corresponds to key-9 assigned to email address MMM, infor-
mation in column 534 corresponds to key-10 assigned to IP
address MMM, information in column 535 corresponds to
key-N assigned to machine ID ABC, etc. Other information
related to other keys can be represented in table 500B. Also,
the configuration of information in table 500B is provided for
illustration, and other embodiments are well suited to creating
and storing a plurality of lists of vertices in various configu-
rations.

Each list of vertices (e.g., column) includes vertices that
are associated with the corresponding key. That is, those
vertices include information that is associated with the cor-

US 9,075,896 B2

11

responding key. For instance, in column 531 associated with
key-1, all the vertices (e.g., transactions 1, 5, 15, N, etc.)
represent transactions that have used credit card number XX.
Similarly, column 532 is associated with key-22 and all the
vertices (e.g., 33, 77, and 95) represent transactions that have
used credit card number 22233344.

Turning back to FIG. 4, at 460, for a first list of vertices, a
least valued index is determined from a group of associated
vertices. The group of associated vertices is based on vertices
in the first list, and also vertices pointed to by the vertices in
the first list, and at the very least includes those vertices. The
operation in 460 is analogous to the operation in 140, and the
corresponding description is equally applicable to 460. As an
example, in table 500B, for the list in column 531 associated
with key-1 assigned to credit card number XX, the least
valued index is of value one (taken from vertices 1, 5, 15, N,
etc.), and that index is associated with transaction-1. Simi-
larly, for the list in column 535 associated with key-N
assigned to machine ID ABC, the least valued index is 7,
associated with transaction-7. As shown in F1G. 5B, row 540
shows, at least preliminarily, the least valued index taken
from the group consisting solely of the vertices in the corre-
sponding list. Row 540 does not take into consideration any
vertices that are pointed by the associated vertices.

At 470, all associated vertices are pointed to a root vertex
associated with the least valued index. At 480, the most cur-
rent root vertex is stored in association with all the associated
vertices. As described previously, the pointing operation links
the associated vertices to other vertices in the graph. In one
case, the pointing operation is performed internally on verti-
ces of a particular list of vertices. That is, at least preliminar-
ily, each vertex in the first list of vertices is pointed to a root
vertex associated with the least valued index. For instance, in
column 531, all the vertices associated with key-1 point to
vertex 1. That is, transactions 5, 15, and N each point to vertex
1. Similarly, for column 532, all the associated vertices (e.g.,
33,77, 95, and 100) point to vertex 33. Also, at least prelimi-
narily, for column 533, all associated vertices point to vertex
15, but will eventually point to vertex 1, as will be described
below. Further, at least preliminarily, for column 534, all
associated vertices point to vertex 5, but will eventually point
to vertex 1, as will be described below. And, at least prelimi-
narily, for column 535, all associated vertices point to vertex
7, but will eventually point to vertex 1, as will be described
below.

The operations in 460, 470, and 480 are repeated for each
of the list of vertices. As the process in flow diagram 400 is
performed on each of the plurality of lists of vertices, each
vertex in the graph will point downhill to another vertex, the
most current root vertex, within the context of the ordered set
of vertices. Root vertices do not point downhill, but form the
endpoint of link between vertices. Eventually, each vertex
will point downhill to a root vertex in a corresponding com-
ponent of the graph. The least valued index is associated with
a vertex in the graph.

As shown in FIG. 5B, the concept of pointing to a related
vertex for related transactions between columns in table 500B
is illustrated by columns 534 and 535, which both include
common information related to transaction 7. That is, the
group of associated vertices includes vertices that are pointed
to by vertices in the first list, and as such are also pointed to the
root vertex. Put another way, the group of associated vertices
includes a first chained vertex that is pointed to by the vertex
associated with the lowest index of vertices included in the
first list and vertices pointed to by the vertices in the first list.
For instance, at least preliminarily, column 535 is associated
with a least valued index of 7, associated with transaction-7.

10

15

20

25

30

35

40

45

50

55

60

65

12

In addition, column 534 is associated with a least valued
index of 5, as provided in row 540, when considering only
information in these two columns. Since transaction 7 is
common to both keys 10 and N, transaction-7 points to the
lowest index provided in both columns 534 and 535, which is
5 (e.g., the chained vertex), associated with transaction-5.

Even further, when considering other processed lists of
vertices, as shown in FIG. 5B, in columns 531 and 534 trans-
action 5 is common to both key-1 and key-10. That is,
included in the group of associated vertices is a second
chained vertex pointed to by the first chained vertex. As an
example, transaction 5 (first chained vertex), from column
531 points downhill to an index of 1 that is associated with
transaction-1 (second chained vertex). As a result, associated
vertices include transaction-7, which points to index 5 from
column 535, transaction-5, which points to index 1 from
column 531, and column 1. In addition, the associated verti-
ces includes all vertices in the lists of vertices of column 531
associated with key-1, column 534 associated with key-10,
and column 535 associated with key-No As a result, all of the
associated vertices point downhill to the root vertex, transac-
tion-1.

As shown in FIG. 5B, table 500B is in various stages of
construction during the performance of the method outlined
in flow diagram 400. The values in table 500B, especially the
pointed to values for each vertex, or the most current root
vertex, will vary depending on how many of the lists of
vertices have been processed. That is, at an intermediate
stage, not all of the entries are provided with values, nor are
the values entered necessarily their final values. As all of the
lists of vertices have been processed, each of the vertices will
point to the root vertex that is the root of a corresponding
component. As such, all vertices that point to the same root
vertex is associated with a common component of the graph,
and as such those transactions within the component are
related. In one embodiment, the index of the root vertex is
assigned as a corresponding component value. For instance,
in the example provided in FIG. 5B, the root vertex 1 is
associated with component-1, and includes all associated ver-
tices included in columns 531, 533, 534, and 535, and possi-
bly other vertices not shown.

FIGS. 5C and 5D are illustrations of look-up-tables (LUTs)
that condense the information obtained from component enu-
meration of a graph. It is intended that FIGS. 5C and 5D are
associated with the information provided in FIGS. 5A and 5B.

In particular. FIG. 5C is an illustration of an exemplary
LUT 500C providing relationships between a vertex and a
corresponding root vertex, in accordance with one embodi-
ment of the present invention. In another embodiment, the
information in LUT 500C is included in the ordered set of
vertices. As shown in LUT 500C, column 551 lists the verti-
ces in the graph. Each vertex entry is associated with a root
index that corresponds to the most current root vertex. Col-
umn 552 provides the current root vertex to which a corre-
sponding vertex is pointing. Depending on the stage of
completion of the process in FIG. 4, some entries mayor may
not be populated, and the values in column 552 may or may
not be finalized. For instance, the root vertex for vertex 2 has
not been processed. As the process in FIG. 4 is completed, the
root vertex, for a corresponding vertex in column 551, forms
the root vertex for a corresponding component, of the same
index number. As such, all associated vertices having the
same root vertex is included in that component.

FIG. 5D is an illustration of an exemplary LUT listing
associated vertices in a component of a graph, in accordance
with one embodiment of the present invention. As shown in
LUT 500D, column 561 lists the component index values.

US 9,075,896 B2

13

That is, components of a graph are indexed in column 561. In
one embodiment, the index for acomponent is the same as the
index of its corresponding root vertex. The remaining col-
umns 562, 563, etc. provide associated vertices that corre-
spond to a particular component.

Each row in FIG. 5D contains a list of associated vertices
for a corresponding component. For instance, row 571 lists all
vertices associated with component-1 that has vertex-1 as its
root vertex. As such, for component-1 from FIG. 5B, trans-
actions 1, 5, 7, 15, 17, 73, N, and possibly other values not
shown point to transaction-1 as their root vertex, and are
included in row 571. Also, row 572 lists vertices associated
with component-2. In this case, vertex-2 does not share infor-
mation with any other vertex. As such, vertex-2 is the only
entry for component-2, and is also the root vertex. In addition,
row 573 lists vertices associated with component-XX. At
present, component-XX includes transactions XX and 900 as
related transactions of a component.

FIG. 6 is a flow diagram illustrating steps in method for fast
component enumeration of graphs that provides more detail
to the implementation of the pointing operations described
above, in accordance with one embodiment of the present
invention. More particularly, FIG. 6 describes operations 140
and 150 in FIG. 1 and operations 460 and 470 in FIG. 4.
Preliminarily, a graph is associated with an ordered set of
vertices, each vertex containing information and being asso-
ciated with a corresponding index. In addition, a plurality of
keys is created, wherein each key defines a unique piece of
information. Each of the keys being assigned a k-value.

At 610, akey associated with a k-value, Key(k), is accessed
from storage. At 620, vertices associated with Key(k) are
listed, such that vertices that are listed include information
associated with Key(k). At 630, each vertex in the list is
cross-referenced to determine if it points to a downhill vertex.
For instance. Table 500C is accessed to determine if the
corresponding vertex is pointing to a most current root vertex.
At 640, a least valued index is determined from the group of
associated vertices that is based on and includes the vertices
in the list, as well as any vertices to which they point.

The operations at 650 and 655 determine the appropriate
least valued index. That is, operations 650 and 655 loop until
all associated vertices are considered. Put another way, all
chained vertices are considered to determine the least valued
index. In particular, decision step 650 considers whether the
vertex associated with the least valued index points to another
vertex. If so, the least valued index is reset to the index
associated with the pointed to vertex. The process returns to
650 and loops until it is determined that the vertex associated
with the least valued index does not point to another vertex,
and continues to 660.

At 660, all associated vertices are pointed to the root vertex
associated with the least valued index. That is, appropriate
fields are populated or re-populated in storage (e.g., in the
ordered set of vertices, or in Tables 500C and 500D). Asso-
ciated vertices were previously considered when determining
the least valued index. As such, all associated vertices are
related in some manner through one or more keys.

Atdecision step 670, itis determined if there is another key
to evaluate. If there is another key, the process sets the k-value
to the next available key. Thereafter, the process loops back to
610.

On the other hand, if all keys have been processed, then the
method of flow diagram 600 ends. At this point, each vertex in
the graph points to a corresponding root vertex. Also, each
root vertex also defines a corresponding component of the
graph. As such, vertices that point to a common root vertex
belong to the same component.

10

15

20

25

30

35

40

45

50

55

60

65

14

Looking now at the quality of relationships between verti-
ces, within each component of a graph the certainty of each
key may diminish over time. As such, for a key that loses its
relational certainty, different vertices sharing that key would
no longer be related. For example, an IP address is assigned to
a particular computing resource accessing the Internet for an
indeterminate amount of time. The assignment of an IP
address (associated with key-KK) can be transitory, lasting as
long as a single Internet session used by a consumer to effect
a transaction. When that session ends, that IP address (key-
KK) may be assigned to another computing resource of
another user. As such, two transactions with the same IP
address (key-KK) may not be related even if the transactions
are only 100 minutes apart. On the other hand, two transac-
tions using the same card number (associated with key-1I)
may be related even ifthey are 100 days apart, since that credit
card is associated with the same user.

To compensate for this uncertainty, keys are allowed to
expire, in accordance with one embodiment of the present
invention. More specifically, a key is allowed to expire after a
condition is satisfied, in one embodiment. For instance, a key
expires after a predetermined period of time according to a set
schedule based upon its corresponding data type. Using the
previous example, a key related to an IP address may expire
after 30 minutes. Upon expiration, the list of vertices associ-
ated with the key is also deleted. However, the effect of
deleting the key on the structure of a corresponding compo-
nent is minimized, since other keys related to that component
may provide the necessary relationship between vertices of
the component. As such, only vertices and keys related to that
component need be reset (repointing vertices and deleting
information related to the expired key), instead of resetting all
the components and vertices of the entire graph.

In practice a graph may contain millions of vertices, and
undergo rapid addition and deletion of (implicit) edges. His-
torically, repeating such operations while maintaining an
orderly, compact data structure has proved difficult, since it
requires reanalyzing all the edges of the graph. However,
embodiments of the present invention are able to efficiently
handle such operations while performing component enu-
meration. As a result, embodiments of the present invention
are able to dramatically improve performance over traditional
methods of component enumeration.

A process for component enumeration can be expressed
using the following exemplary pseudo code, in accordance
with one embodiment of the present invention. In particular,
let “V” be the set of vertices (“v”) containing information,
such as consumer transaction information. Let “G” be the
graph that results upon placing an edge between each pair of
vertices with a shared key. The present embodiment is able to
partition “V” into subsets that correspond to the connected
components of “G.” without explicitly constructing “G.” This
is accomplished by implicitly adding edges to “V” using the
following pseudo code:

For each vertex V
{ For each key K associated with V
{ Add V to list of vertices associated with key K } }
For each key K
{ For each vertex V associated with K
{ Get index of vertex to which it points (if any)
Note vertex with lowest index

For each vertex V associated with K
{ Repoint V to vertex with lowest index } }

US 9,075,896 B2

15

The resulting structure is a forest “F,” in which each tree
has directed edges pointing toward the root. Each rootin a tree
of “F” is the vertex of lowest index in a component of “O.”
Moreover, for each vertex “v” in any connected component of
graph “0,” the corresponding tree in forest “F” contains a
short path from the vertex to the root. By associating each tree
with the index of'its root vertex, all the connected components
of “O” have successfully been labeled.

While the methods of embodiments illustrated in flow dia-
grams of FIGS. 1, 4 and 6 show specific sequences and
quantity of operations, the present invention is suitable to
alternative embodiments. For example, not all the operations
provided for in the methods presented above are required for
the present invention. Furthermore, additional operations can
be added to the operations presented in the present embodi-
ments. Likewise the sequences of operations can be modified
depending upon the application.

A method and system for fast enumeration of components
of a graph is thus described. While the invention has been
illustrated and described by means of specific embodiments,
it is to be understood that numerous changes and modifica-
tions may be made therein without departing from the spirit
and scope of the invention as defined in the appended claims
and equivalents thereof. Furthermore, while the present
invention has been described in particular embodiments, it
should be appreciated that the present invention should not be
construed as limited by such embodiments, but rather con-
strued according to the below claims.

What is claimed:
1. A method for enumerating a graph, the method compris-
ing:
creating, by a processor, a graph for a set of data records,
each data record represented as a vertex in the graph,
each data record comprising a unique index and one or
more data elements;
creating a key for each unique value of each data element
represented by the vertices in the graph, each key repre-
senting an implicit edge in the graph, wherein two ver-
tices sharing a key implicitly share an edge;
partitioning the vertices in the graph into a plurality of
subsets, each subset comprising a list of vertices,
wherein vertices in a list share a same key; and
for each list of vertices:
determining a vertex with a least valued index in the list
based on the vertices in the list and vertices pointed to
by the vertices in the list; and
associating all vertices in a list of vertices with a vertex
having the least valued index.
2. The method of claim 1, further comprising:
determining repeatedly one by one for each list of vertices
of the plurality of subsets a vertex with a least valued
index among vertices pointed to by the vertices in the list
until a root vertex that points to itself is found.
3. The method of claim 2, further comprising:
associating the list of vertices to the root vertex.
4. The method of claim 3, further comprising:
storing the graph, the plurality of list of vertices and the
corresponding root vertex for each list of vertices in a
database.
5. The method of claim 3, further comprising:
grouping one or more lists of vertices that point to a same
root vertex with a component of the graph.
6. The method of claim 1, further comprising:
deleting a corresponding list of vertices that share a key
that expired under a predetermined condition.

30

35

40

45

50

55

16

7. The method of claim 1, further comprising:

deleting a vertex in the graph responsive to the vertex being

expired under a predetermined condition.

8. The method of claim 7, further comprising:

responsive to the expired vertex being a root vertex, deter-

mining a new root vertex for one or more lists associated
with the expired vertex.

9. The method of claim 1, wherein the data records are
consumer transaction records.

10. The method of claim 9, wherein the one or more data
elements include at least one of: credit card number, device
fingerprint, Internet protocol (IP) address, electronic mail
address, and hypertext transmission protocol (HTTP) cookie.

11. A non-transitory computer-readable storage medium
storing executable computer program instructions for provid-
ing electronic money transfer, the computer program instruc-
tions comprising instructions for:

creating, by a processor, a graph for a set of data records,

each data record represented as a vertex in the graph,
each data record comprising a unique index and one or
more data elements;

creating a key for each unique value of each data element

represented by the vertices in the graph, each key repre-
senting an implicit edge in the graph, wherein two ver-
tices sharing a key implicitly share an edge;
partitioning the vertices in the graph into a plurality of
subsets, each subset comprising a list of vertices,
wherein vertices in a list share a same key; and

for each list of vertices:

determining a vertex with a least valued index in the list
based on the vertices in the list and vertices pointed to
by the vertices in the list; and

associating all vertices in a list of vertices with a vertex
having the least valued index.

12. The non-transitory computer-readable storage medium
of claim 11, further comprising instructions for:

determining repeatedly one by one for each list of vertices

of the plurality of subsets, a vertex with a least valued
index among vertices pointed to by the vertices in the list
until a root vertex that points to itself is found.

13. The non-transitory computer-readable storage medium
of claim 12, further comprising instructions for:

associating the list of vertices to the root vertex.

14. The non-transitory computer-readable storage medium
of claim 13, further comprising instructions for:

storing the graph, the plurality of list of vertices and the

corresponding root vertex for each list of vertices in a
database.

15. The non-transitory computer-readable storage medium
of claim 13, further comprising instructions for:

grouping one or more lists of vertices that point to a same

root vertex with a component of the graph.

16. The non-transitory computer-readable storage medium
of claim 11, further comprising instructions for:

deleting a list of vertices in the graph responsive to a key

being expired under a predetermined condition, the list
of vertices sharing the expired key.

17. The non-transitory computer-readable storage medium
of claim 11, further comprising instructions for:

deleting a vertex in the graph responsive to the vertex being

expired under a predetermined condition.

18. The non-transitory computer-readable storage medium
of claim 17, further comprising instructions for:

responsive to the expired vertex being a root vertex, deter-

mining a new root vertex for one or more lists associated
with the expired vertex.

US 9,075,896 B2
17

19. The non-transitory computer-readable storage medium
of claim 11, wherein the data records are consumer transac-
tion records.

20. The non-transitory computer-readable storage medium
of claim 19, wherein the one or more data elements include at 5
least one of: credit card number, device fingerprint, Internet
protocol (IP) address, electronic mail address, and hypertext
transmission protocol (HTTP) cookie.

#* #* #* #* #*

18

